Personalized Medicine: Pharmacogenomics Testing and Applications In Clinical Practice

Alyson Wolz DNP, APRN, PMHCNS, BC, CBIS
Audio Check

To ensure that you can hear the presentation, please take a moment to double check your audio settings.

Go to the Audio tab in your GoToWebinar dashboard.
 • If you have selected phone call, make sure you’re dialed into the conference number.
 • If you are dialed in but cannot hear, try hanging up and calling back in.
 • If you are using only computer audio, check that your device isn’t muted.
 • If you’re using listening devices such as headsets, double check they are plugged in/turned on.
NeuroRestorative’s COVID-19 Response

We are committed to protecting the health and safety of the individuals we serve, our staff, and the community. Our services are considered essential, and we are taking precautions to minimize disruption to services and keep those in our care and our team members safe. In some programs, that has meant innovating our service delivery model through Interactive Telehealth Services. We provide Interactive Telehealth Services throughout the country as an alternative to in-person services. Through Interactive Telehealth Services, we deliver the same high-quality supports as we would in-person, but in an interactive, virtual format that is HIPAA compliant and recognized by most healthcare plans and carriers.

You can learn more about our COVID-19 prevention and response plan at our Update Center by visiting neurorestorative.com.
No Conflict of Interest to Disclose
Objectives

1. Define pharmacogenomics and other key terms for basic understanding of genetics and personalized medicine.

2. Describe how variations in genes affect individual response to psychiatric medications.

3. Learn to interpret pharmacogenomics testing results and to use that information to guide clinical decision-making.

4. Provide resources for guidelines, further information, and application of pharmacogenomics testing in practice.
What is Personalized Medicine?

- NIH: National Genome Research Institute:

Personalized medicine is an emerging practice of medicine that uses an individual's genetic profile to guide decisions made in regard to the prevention, diagnosis, and treatment of disease. Knowledge of a patient's genetic profile can help doctors select the proper medication or therapy and administer it using the proper dose or regimen. Personalized medicine is being advanced through data from the Human Genome Project.

Retrieved from: https://www.genome.gov/genetics-glossary/Personalized-Medicine
What is Precision Medicine?

- According to the Precision Medicine Initiative, precision medicine is "an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person." This approach will allow doctors and researchers to predict more accurately which treatment and prevention strategies for a particular disease will work in which groups of people. It is in contrast to a one-size-fits-all approach, in which disease treatment and prevention strategies are developed for the average person, with less consideration for the differences between individuals.

- Data Driven

Pharmacogenomics

“Pharmacogenomics is the study of how genes affect a person’s response to drugs. This relatively new field combines pharmacology (the science of drugs) and genomics (the study of genes and their functions) to develop effective, safe medications and doses that will be tailored to a person’s genetic makeup.”

Clinical Goals

Pharmacogenomics

AVOID
Adverse Drug Reactions

MAXIMIZE
Drug efficacy

SELECT
Responsive Patients
Why it matters?

- Drugs don't work the same way for everyone.

- It can be difficult to predict response to a drug.

- Adverse drug reactions are a significant cause of hospitalizations and deaths in the United States.

- With the knowledge gained from the Human Genome Project, researchers are learning how inherited differences in genes affect the body’s response to medications.
Single Nucleotide Polymorphisms

- Single nucleotide polymorphisms, frequently called SNPs are the most common type of genetic variation among people.
- Most SNPs have no effect on health or development.
- Some of these genetic differences have proven to be important in the study of human health.
- SNPs that may help predict an individual’s response to certain drugs, susceptibility to environmental factors such as toxins, and risk of developing particular diseases.
- SNPs can also be used to track the inheritance of disease genes within families.
• Natural variations (DNA polymorphisms) play a role in our risk of getting or not getting certain diseases

• External factors such as environment, diet, and exercise, along with polymorphisms can also determine an individual’s risk for disease

• Natural genetic variations can, in part, determine drug efficacy

• Variations in DNA can lead to differences in pharmacodynamics and pharmacokinetics in the individual patient

• Based on the patient’s individual genetic expression, biomarkers and DNA microarrays can help detect the best medication for the patient.
Pharmacokinetics vs Pharmacodynamics

Pharmacokinetics: What the body does to the drug: getting the drug in and back out:
- Impact of gene variation on active vs pro-drugs.
- Factors that influence the concentration of the drug that reaches the target. Where in the pharmacological pathway the variants impact

Pharmacodynamics: What the drug does to the body. Factors at the target or “downstream” that can influence drug response.
Genetic Polymorphisms

Pharmacokinetic
- Absorption
- Excretion
- Metabolism
- Distribution

Pharmacodynamics
- Receptors
- Ion Channels
- Immune System
- Enzymes
Individual Response

responds to normal dose
responds to lower dose
responds to higher dose
responds to alternative medication
Pharmacologic Variability

- Genetics:
 Polymorphisms – Receptors, transporters, and enzymes

- Lifestyle:
 Diet, Alcohol, tobacco use, other drug therapy/supplements

- Reduced Drug Elimination/Pathology:
 Hepatic Function, Renal Function

- Physiology:
 Sex, Age
SHOULD I ORDER A PHARMACOGENOMICS TEST?

Ask: What will I do with the results? Will it impact how I treat my patient?

Pre-emptive Approach: “Screening” Test everyone (Used in larger research-focused health centers such as Mayo Clinic, Mount Sinai, St. Jude, University of Chicago)

Case-Based Approach: Planning on starting a new medication
- Guide dosage selection, drug selection, ensure drug efficacy
- Avoid serious adverse reactions such as a known drug-gene relationships associated with severe toxicity (HLA-B*58:01 allele have an increased risk of Stevens Johnson Syndrome (SJS) and toxic epidermal necrolysis (TENS) when treated with lamotrigine or allopurinol.

Reflexive Approach:
- Unexplained sensitivities or toxicities
- History of multiple medication trials with poor efficacy
- Assistance in making a more informed decision on medication selection or dose (i.e. antidepressant, delayed onset, cost of medications, etc.)
What does this have to do with psychiatry and ABI?
Mental Health and Acquired Brain Injury

Factors that may adversely influence the mental health of a person with brain injury can be seen at a number of levels:

- Direct effects of brain injuries (e.g., cognitive and motor disturbances, emotional disorders, increased impulsivity, depression, rigidity, hyperactivity) may precipitate mental health difficulties.
- Longer-term implications of the effects of brain injury may result in profound personality changes.
- Changes in capabilities and competencies post injury may increase the likelihood of depression for people with ABI. Suicide rates are 2-3 X higher among people with brain injuries than the general population, especially in the first 6 months post injury.
- Brain injury is often a catastrophic, life-changing event for individuals and their families. This may predispose them to significant depressive reactions and feelings of social isolation, helplessness and hopelessness.
- Pre-injury social functioning, alcohol use, previous psychiatric problems and family history, all influence mental health.
Psychiatric/Mental Health Co-morbidity in ABI/Neurodevelopmental Disorders

- Mood Disorders
- Anxiety Disorders
- Personality Disorders
- Behavior Disorders
- Autism Spectrum Disorder
- ADHD
- Psychotic Disorders
- Neurocognitive Disorders
Challenges in prescribing

- Incomplete records
- Individual may be a poor historian/ Family or guardian may not know history
- Disjointed and interrupted treatment history
- Unknown family history
- Poor insight
- Inability to identify or verbalize treatment response and/or side effects
- Polypharmacy
- Multimorbidity
Polypharmacy

Individuals in residential treatment facilities:

- Have severe and chronic disorders
- Have received a variety of treatments in the past and are often taking several psychotropic medications
- During brief hospital stays, medications are often used to quickly stabilize patients.
- During repeated admissions, medications often accumulate. New medications are added, while past medications may be continued for no apparent reason.
- For example, Connor et al. (1997) found polypharmacy in 60.3% of patients admitted to an RTF.
- One factor associated with polypharmacy was the number of previous psychiatric placements.
Multimorbidity

The presence of two or more long-term health conditions

- Defined physical and Mental Health Conditions (Diabetes or Schizophrenia)
- Ongoing Conditions (Learning Disabilities)
- Alcohol and Substance Misuse
- Symptom Complexes (Frailty or Chronic Pain)
- Sensory Impairment (Sight/Hearing Loss)

Medication Safety in Polypharmacy: WHO
https://apps.who.int/iris/rest/bitstreams/1235792/retrieve
Other Drug-Drug Interactions

- A patient on several medications known to prolong the QT interval remains a risk for medication induced ‘Torsade de pointes’ despite having normal pharmacogenomics results.

- In the case of phenoconversion, an inhibitor or inducer may alter the function of an enzyme (fluoxetine, paroxetine)
Case Study: Charles

56 year old Black male 6’ 0” 260lbs
- TBI r/t MVA 1984 and 2 additional ABIs r/t seizures 2018
- Impairments r/t head injuries: delayed speech, narcolepsy, psychomotor retardation, balance issues and mobility impairments with hx of falls
- Incarcerated r/t assault charges
- Schizoaffective Disorder-depressed with active auditory hallucinations
- Alcohol Use Disorder
- Hypertension
- Hyperlipidemia
- Angina Pectoris
- GERD
- Asthma
- Dystonia
- Chronic Low back pain, knee pain, arthralgia
- Insomnia
- Obesity
- Allergies: Latex, Bee Stings, Bananas
Multimorbidity

The presence of two or more long-term health conditions

- Defined physical and Mental Health Conditions (Diabetes or Schizophrenia)
- Ongoing Conditions (Learning Disabilities)
- Symptom Complexes (Frailty or Chronic Pain)
- Sensory Impairment (Sight/Hearing Loss)
- Alcohol and Substance Misuse
Medications upon admission

- Amlodipine 5mg 1 tab PO q AM for hypertension
- Avorstatin 20mg 1 tab PO q hs for hyperlipidemia
- Diphenhydramine 50mg q hs for insomnia
- Doxazosin 2mg q hs for hypertension
- Metoprolol ER 100mg 3 tabs q AM for chronic left Diastolic Heart Failure
- Fluticasone-salmeterol 230-21mcg 2 puffs bid
- Furosemide 40mg daily for hypertension
- Gabapentin 1200 mg tid for arthralgia
- Lisinopril 40mg daily for hypertension
- Hydralazine 50mg 1 tab PO bid for hypertension
- Omeprazole 20mg ER 20mg daily for GERD
- Risperidone 1mg q hs for schizophrenia
- Trazodone 100mg q hs for insomnia
- Venlafaxine EX 300mg q AM for depression
- Acetaminophen 650mg q 4 hours PRN for knee pain
- Cyclobenzaprine 10mg 1 tab PO PRN for muscle back spasm
- Ibuprofen 600mg q 8 hours PRN for Arthralgia
- Nitroglycerin SL 0.4mg 1 tab q 5 min up to 3 doses PRN for chest pain
Past Medications (per records available)

Diphenhydramine 50mg q hs
Risperidone 1 mg q AM and 3mg q hs
Trazodone 200mg q hs
Venlafaxine XR 300mg q AM
Fluoxetine 40mg q AM
Clonidine 0.1mg tid
<table>
<thead>
<tr>
<th>Concerns/Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARLES</td>
</tr>
<tr>
<td>• Initial Insomnia</td>
</tr>
<tr>
<td>• Voices</td>
</tr>
<tr>
<td>• No Interest</td>
</tr>
<tr>
<td>• No Enjoyment</td>
</tr>
<tr>
<td>• No Motivation</td>
</tr>
<tr>
<td>STAFF</td>
</tr>
<tr>
<td>• Insomnia</td>
</tr>
<tr>
<td>• Napping during the day</td>
</tr>
<tr>
<td>• Flat Affect</td>
</tr>
<tr>
<td>• Irritability</td>
</tr>
<tr>
<td>• Low tolerance for peers</td>
</tr>
<tr>
<td>• Lack of Motivation</td>
</tr>
</tbody>
</table>
GeneSight® Psychotropic
COMBINATORIAL PHARMACOGENOMIC TEST

DOB:
Order Number:
Report Date:
Clinician:
Reference:

ANTIDEPRESSANTS

<table>
<thead>
<tr>
<th>USE AS DIRECTED</th>
<th>MODERATE GENE-DRUG INTERACTION</th>
<th>SIGNIFICANT GENE-DRUG INTERACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>desvenlafaxine (Pristiq®)</td>
<td>citalopram (Celexa®)</td>
<td>bupropion (Wellbutrin®)</td>
</tr>
<tr>
<td>levomilnacipran (Fetzima®)</td>
<td>escitalopram (Lexapro®)</td>
<td>fluoxetine (Prozac®)</td>
</tr>
<tr>
<td>selegiline (Emsam®)</td>
<td>mirtazapine (Remeron®)</td>
<td>venlafaxine (Effexor®)</td>
</tr>
<tr>
<td>sertraline (Zoloft®)</td>
<td>trazodone (Desyrel®)</td>
<td>amitriptyline (Elavil®)</td>
</tr>
<tr>
<td>vilazodone (Viibryd®)</td>
<td>duloxetine (Cymbalta®)</td>
<td>clomipramine (Anafranil®)</td>
</tr>
<tr>
<td></td>
<td>fluvoxamine (Luvox®)</td>
<td>desipramine (Norpramin®)</td>
</tr>
</tbody>
</table>

CLINICAL CONSIDERATIONS

1: Serum level may be too high, lower doses may be required.
3: Difficult to predict dose adjustments due to conflicting variations in metabolism.
4: Genotype may impact drug mechanism of action and result in reduced efficacy.
6: Use of this drug may increase risk of side effects.
7: Serum level may be too low in smokers.
8: FDA label identifies a potential gene-drug interaction for this medication.

All psychotropic medications require clinical monitoring.
This report is not intended to imply that the drugs listed are approved for the same indications or that they are comparable in safety or efficacy. The brand name is shown for illustrative purposes only, other brand names may be available. The prescribing physician should review the prescribing information for the drug(s) being considered and make treatment decisions based on the patient's individual needs and the characteristics of the drug prescribed. Propranolol might be considered off-label when being used for neuropsychiatric disorders. Please consult the FDA drug label for specific guidelines regarding its use.
GeneSight® Psychotropic
COMBINATORIAL PHARMACOGENOMIC TEST

DOB:
Order Number:
Report Date:
Clinician:
Reference:

Questions? Call 855.891.9415 or
email medinfo@assurexhealth.com

USE AS DIRECTED

- alprazolam (Xanax®)
- buspirone (BuSpar®)
- chlordiazepoxide (Librium®)
- clonazepam (Klonopin®)
- clorazeptate (Tranxene®)
- diazepam (Valium®)
- eszopiclone (Lunesta®)
- lorazepam (Ativan®)
- oxazepam (Serax®)
- temazepam (Restoril®)
- zolpidem (Ambien®)

MODERATE GENE-DRUG INTERACTION

<table>
<thead>
<tr>
<th>Drug</th>
<th>Interacted With</th>
<th>Interaction Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>propranolol (Inderal®)</td>
<td></td>
<td>3, 7, 8</td>
</tr>
</tbody>
</table>

SIGNIFICANT GENE-DRUG INTERACTION

CLINICAL CONSIDERATIONS

3: Difficult to predict dose adjustments due to conflicting variations in metabolism.
7: Serum level may be too low in smokers.
8: FDA label identifies a potential gene-drug interaction for this medication.

All psychotropic medications require clinical monitoring.
This report is not intended to imply that the drugs listed are approved for the same indications or that they are comparable in safety or efficacy. The brand name is shown for illustrative purposes only; other brand names may be available. The prescribing physician should review the prescribing information for the drug(s) being considered and make treatment decisions based on the patient's individual needs and the characteristics of the drug prescribed. Propranolol might be considered off-label when being used for neuropsychiatric disorders. Please consult the FDA drug label for specific guidelines regarding its use.
GeneSight® Psychotropic
COMBINATORIAL PHARMACOGENOMIC TEST

DOB:

Order Number:

Report Date:

Clinician:

Reference:

ANTIPSYCHOTICS

<table>
<thead>
<tr>
<th>USE AS DIRECTED</th>
<th>MODERATE GENE-DRUG INTERACTION</th>
<th>SIGNIFICANT GENE-DRUG INTERACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>asenapine (Saphris®)</td>
<td>fluphenazine (Prolixin®)</td>
<td>thiothixene (Navane®)</td>
</tr>
<tr>
<td>cariprazine (Vraylar®)</td>
<td>quetiapine (Seroquel®)</td>
<td>aripiprazole (Abilify®)</td>
</tr>
<tr>
<td>lurasidone (Latuda®)</td>
<td>chlorpromazine (Thorazine®)</td>
<td>bexipiprazole (Rexulti®)</td>
</tr>
<tr>
<td>paliperidone (Invega®)</td>
<td>olanzapine (Zyprexa®)</td>
<td>iloperidone (Fanapt®)</td>
</tr>
<tr>
<td>ziprasidone (Geodon®)</td>
<td>clozapine (Clozaril®)</td>
<td>perphenazine (Trilafon®)</td>
</tr>
<tr>
<td></td>
<td>haloperidol (Haldol®)</td>
<td>risperidone (Risperdal®)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thioridazine (Mellaril®)</td>
</tr>
</tbody>
</table>

CLINICAL CONSIDERATIONS

1: Serum level may be too high, lower doses may be required.
2: Serum level may be too low, higher doses may be required.
3: Difficult to predict dose adjustments due to conflicting variations in metabolism.
6: Use of this drug may increase risk of side effects.
7: Serum level may be too low in smokers.
8: FDA label identifies a potential gene-drug interaction for this medication.
9: Per FDA label, this medication is contraindicated for this genotype.

All psychotropic medications require clinical monitoring.

This report is not intended to imply that the drugs listed are approved for the same indications or that they are comparable in safety or efficacy. The brand name is shown for illustrative purposes only; other brand names may be available. The prescribing physician should review the prescribing information for the drug(s) being considered and make treatment decisions based on the patient's individual needs and the characteristics of the drug prescribed. Propranolol might be considered off-label when being used for neuropsychiatric disorders. Please consult the FDA drug label for specific guidelines regarding its use.
MOOD STABILIZERS

USE AS DIRECTED
- carbamazepine (Tegretol®)
- lamotrigine (Lamictal®)
- oxcarbazepine (Trileptal®)
- valproic acid/divalproex (Depakote®)

MODERATE GENE-DRUG INTERACTION

- No proven genetic markers
 - gabapentin (Neurontin®) 10
 - topiramate (Topamax®) 10
 - lithium (Eskalith®) 10

SIGNIFICANT GENE-DRUG INTERACTION

CLINICAL CONSIDERATIONS

10: This medication does not have clinically proven genetic markers that allow it to be categorized.

All psychotropic medications require clinical monitoring.
This report is not intended to imply that the drugs listed are approved for the same indications or that they are comparable in safety or efficacy. The brand name is shown for illustrative purposes only; other brand names may be available. The prescribing physician should review the prescribing information for the drug(s) being considered and make treatment decisions based on the patient's individual needs and the characteristics of the drug prescribed. Propranolol might be considered off-label when being used for neuropsychiatric disorders. Please consult the FDA drug label for specific guidelines regarding its use.
PATIENT GENOTYPES AND PHENOTYPES

PHARMACODYNAMIC GENES

<table>
<thead>
<tr>
<th>Gene</th>
<th>Genotype</th>
<th>Response</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC6A4</td>
<td>L/L</td>
<td>Normal</td>
<td>Normal Risk</td>
<td>This patient is homozygous for the long promoter polymorphism of the serotonin transporter gene. The long promoter allele is reported to express normal levels of the serotonin transporter. The patient is predicted to have a normal response to selective serotonin reuptake inhibitors.</td>
</tr>
<tr>
<td>HTR2A</td>
<td>G/G</td>
<td>Increased</td>
<td>Increased Sensitivity</td>
<td>This individual is homozygous variant for the G allele of the -1438G>A polymorphism for the Serotonin Receptor Type 2A. They carry two copies of the G allele. This genotype has been associated with an increased risk of adverse drug reactions with certain selective serotonin reuptake inhibitors.</td>
</tr>
<tr>
<td>HLA-B*1502</td>
<td></td>
<td>Lower Risk</td>
<td>Not Present</td>
<td>This patient does not carry the HLA-B*1502 allele or a closely related 15 allele. Absence of HLA-B1502 and the closely related *15 alleles suggests lower risk of serious dermatologic reactions including toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS) when taking certain mood stabilizers.</td>
</tr>
<tr>
<td>HLA-A*3101</td>
<td></td>
<td>Lower Risk</td>
<td>A/A</td>
<td>This patient is homozygous for the A allele of the rs1061235 A>T polymorphism indicating absence of the HLA-A*3101 allele. This genotype suggests a lower risk of serious hypersensitivity reactions, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), maculopapular eruptions, and Drug Reaction with Eosinophilia and Systemic Symptoms when taking certain mood stabilizers.</td>
</tr>
</tbody>
</table>
PATIENT GENOTYPES AND PHENOTYPES

PHARMACOKINETIC GENES

CYP1A2
- Ultrapid Metabolizer
- -3860G>A - G/A, -2467T>DELT - T/DELT, -163C>A - C/A
 This genotype is most consistent with the ultrapid metabolizer phenotype. This patient may have increased enzyme activity as compared to individuals with the normal phenotype.

CYP2B6
- Intermediate Metabolizer
- *1/*6
 CYP2B6*1 allele enzyme activity: Normal
 CYP2B6*6 allele enzyme activity: Reduced
 This genotype is most consistent with the intermediate metabolizer phenotype. This patient may have reduced enzyme activity as compared to individuals with the normal phenotype.

CYP2C19
- Extensive (Normal) Metabolizer
- *1/*1
 CYP2C19*1 allele enzyme activity: Normal
 CYP2C19*1 allele enzyme activity: Normal
 This genotype is most consistent with the extensive (normal) metabolizer phenotype.

CYP2C9
- Extensive (Normal) Metabolizer
- *1/*1
 CYP2C9*1 allele enzyme activity: Normal
 CYP2C9*1 allele enzyme activity: Normal
 This genotype is most consistent with the extensive (normal) metabolizer phenotype.

CYP2D6
- Poor Metabolizer
- *4/*41 (DUPLICATION)
 CYP2D6*4 allele enzyme activity: None
 CYP2D6*41 allele enzyme activity: Reduced
 This genotype is most consistent with the poor metabolizer phenotype. This patient may have reduced enzyme activity as compared to individuals with the normal phenotype.
 A duplication of the gene CYP2D6 has been detected in this patient. While current genotyping techniques allow for the detection of this duplication, in the case of heterozygosity, such techniques do not allow for the identification of the allele that has been duplicated. This duplication, depending on the allele duplicated, can result in increased expression of CYP2D6.

CYP3A4
- Extensive (Normal) Metabolizer
- *1/*1
 CYP3A4*1 allele enzyme activity: Normal
 CYP3A4*1 allele enzyme activity: Normal
 This genotype is most consistent with the extensive (normal) metabolizer phenotype.

UGT1A4
- Extensive (Normal) Metabolizer
- *1/*1
 UGT1A4*1 allele enzyme activity: Normal
 UGT1A4*1 allele enzyme activity: Normal
 This genotype is most consistent with the extensive (normal) metabolizer phenotype. The patient is expected to have normal enzyme activity.

UGT2B15
- Extensive (Normal) Metabolizer
- *1/*2
 UGT2B15*1 allele enzyme activity: Normal
 UGT2B15*2 allele enzyme activity: Reduced
 This genotype is most consistent with the extensive (normal) metabolizer phenotype. The patient is expected to have normal enzyme activity.
GENE-DRUG INTERACTIONS

<table>
<thead>
<tr>
<th>USE AS DIRECTED</th>
<th>CYP1A2</th>
<th>CYP2B6</th>
<th>CYP2C19</th>
<th>CYP2C9</th>
<th>CYP3A4</th>
<th>CYP2D6</th>
<th>UGT1A4</th>
<th>UGT2B15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIDEPRESSANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>desvenlafaxine (Pristiq®)</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>levomilnacipran (Fetzima®)</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>selegiline (Emstam®)</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>sertraline (Zoloft®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>vilazodone (Vibryd®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>ANXIOLYTICS AND HYPNOTICS</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>alprazolam (Xanax®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>buspirone (BuSpar®)</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>chlordiazepoxide (Librium®)</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>clonazepam (Klonopin®)</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>clorazepate (Tranxene®)</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>diazepam (Valium®)</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>eszopiclone (Lunesta®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>lorazepam (Ativan®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>oxazepam (Serax®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>temazepam (Restoril®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>zolpidem (Ambien®)</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>ANTIPSYCHOTICS</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>asenapine (Saphris®)</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>cariprazine (Vraylar®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>lurasidone (Latuda®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>paliperidon (Invega®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>ziprasidone (Geodon®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>MOOD STABILIZERS</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>carbamazepine (Tegretol®)</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>lamotrigine (Lamictal®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>oxcarbazepine (Trileptal®)</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>valproic acid/divalproex (Depakote®)</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

MODERATE GENE-DRUG INTERACTION

<table>
<thead>
<tr>
<th>CYP1A2</th>
<th>CYP2B6</th>
<th>CYP2C19</th>
<th>CYP2C9</th>
<th>CYP3A4</th>
<th>CYP2D6</th>
<th>UGT1A4</th>
<th>UGT2B15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ● - Variation was found in patient genotype that may impact medication response.
- ○ - This gene is associated with medication response, but patient genotype is normal.
GENE-DRUG INTERACTIONS

MODERATE GENE-DRUG INTERACTION

<table>
<thead>
<tr>
<th>ANTIDEPRESSANTS</th>
<th>CYP1A2</th>
<th>CYP2B6</th>
<th>CYP2C19</th>
<th>CYP2C9</th>
<th>CYP3A4</th>
<th>CYP2D6</th>
<th>UGT1A4</th>
<th>UGT2B15</th>
</tr>
</thead>
<tbody>
<tr>
<td>trazodone (Desyrel<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANXIOLYTICS AND HYPNOTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>propranolol (Inderal<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>ANTIPSYCHOTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorpromazine (Thorazine<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clozapine (Clozaril<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluphenazine (Prolixin<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>haloperidol (Haldol<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>olanzapine (Zyprexa<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quetiapine (Seroquel<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIGNIFICANT GENE-DRUG INTERACTION

<table>
<thead>
<tr>
<th>ANTIDEPRESSANTS</th>
<th>CYP1A2</th>
<th>CYP2B6</th>
<th>CYP2C19</th>
<th>CYP2C9</th>
<th>CYP3A4</th>
<th>CYP2D6</th>
<th>UGT1A4</th>
<th>UGT2B15</th>
</tr>
</thead>
<tbody>
<tr>
<td>amitriptyline (Elavil<sup>®</sup>)</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>buproprion (Wellbutrin<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>clomipramine (Anafranil<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>desipramine (Norpramin<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>doxepin (Sinequan<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>fluoxetine (Prozac<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>imipramine (Tofranil<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>nortriptyline (Pamelor<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>paroxetine (Paxil<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>venlafaxine (Effexor<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>vortioxetine (Trintellix<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ANTIPSYCHOTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aripiprazole (Abilify<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>brexiprazole (Rexulti<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iloperidone (Fanapt<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>perphenazine (Trilafon<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>risperidone (Risperdal<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thioridazine (Mellaril<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiothixene (Navane<sup>®</sup>)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

● - Variation was found in patient genotype that may impact medication response. ○ - This gene is associated with medication response, but patient genotype is normal.
Note: Serum levels of folic acid may be too low. Folate supplementation or higher daily intake of folic acid may be required.

PATIENT GENOTYPE AND PHENOTYPE

<table>
<thead>
<tr>
<th>MTHFR</th>
<th>Intermediate Activity</th>
<th>C677T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This individual is heterozygous for the C677T polymorphism in the MTHFR gene. This genotype is associated with reduced folic acid metabolism, moderately decreased serum folate levels, and moderately increased homocysteine levels.

TEST INFORMATION

The tissue sample was collected on 7/1/2020 and received in the laboratory on 7/3/2020. Genomic DNA was isolated and the relevant genomic regions were amplified by polymerase chain reaction (PCR). Analysis of MTHFR was completed by using IPLEX MassARRAY® technology (Agilent Technologies). The following genetic variant may be detected in this assay: MTHFR C677T (NM_000254.3:c.201G>A).}

This test was developed and its performance characteristics determined by AccuRx Health. It has not been cleared or approved by the U.S. Food and Drug Administration.

These interpretations are based on data available in scientific literature and prescribing information for the relevant drugs. Interpretations are, in some instances, based on data regarding the pharmacokinetic, pharmacodynamic and pharmacogenetic properties of a drug derived from non-clinical studies (e.g., in vitro studies). Findings from studies conducted in a non-clinical setting or clinical studies involving healthy subjects are not necessarily indicative of clinical performance in a particular patient.

This report was reviewed and released on 7/7/2020 by:

[Signature]

Russ, R.N.

Disclaimer of Liability

The information contained in this report is provided as a service and does not constitute medical advice. At the time of report generation this information is believed to be current and is based upon published research; however, research data evolves and amendments to the prescribing information of the drugs listed will change over time. While this report is believed to be accurate and complete at the date issued, THE DATA IS PROVIDED "AS IS" WITHOUT WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. An individual must refer to the specific circumstances of each case and the treating healthcare provider for ultimate responsibility for all treatment decisions made with regard to a patient, including any made on the basis of a patient’s genotype.

Clinical testing was completed by NELA, CAP, and PEP, Incorporated in the United States.

GDBI Mission Montgomery Risk

4545 W. Cerritos Ave

Covina, CA 91724

Customer Service

Please contact 215.691.0115 or mdinfo@accuRx.com for assistance with report interpretation. For all other inquiries please contact this 215.691.0115 or support@accuRx.com.
ANTIPSYCHOTICS

<table>
<thead>
<tr>
<th>USE AS DIRECTED</th>
<th>MODERATE GENE-DRUG INTERACTION</th>
<th>SIGNIFICANT GENE-DRUG INTERACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>asenapine (Saphris®)</td>
<td>fluphenazine (Prolixin®) 1</td>
<td>thiothixene (Navane®) 2,7</td>
</tr>
<tr>
<td>cariprazine (Vraylar®)</td>
<td>quetiapine (Seroquel®) 1</td>
<td>aripiprazole (Abilify®) 1,6,8</td>
</tr>
<tr>
<td>lurasidone (Latuda®)</td>
<td>chlorpromazine (Thorazine®) 3,7</td>
<td>brexpiprazole (Rexulti®) 1,6,8</td>
</tr>
<tr>
<td>paliperidone (Invega®)</td>
<td>olanzapine (Zyprexa®) 3,7</td>
<td>iloperidone (Fanapt®) 1,6,8</td>
</tr>
<tr>
<td>ziprasidone (Geodon®)</td>
<td>clozapine (Clozaril®) 3,7,8</td>
<td>perphenazine (Trilafon®) 1,6,8</td>
</tr>
<tr>
<td></td>
<td>haloperidol (Haldol®) 3,7,8</td>
<td>risperidone (Risperdal®) 1,6,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thioridazine (Mellaril®) 3,7,9</td>
</tr>
</tbody>
</table>

CLINICAL CONSIDERATIONS
1: Serum level may be too high, lower doses may be required.
2: Serum level may be too low, higher doses may be required.
3: Difficult to predict dose adjustments due to conflicting variations in metabolism.
6: Use of this drug may increase risk of side effects.
7: Serum level may be too low in smokers.
8: FDA label identifies a potential gene-drug interaction for this medication.
9: Per FDA label, this medication is contraindicated for this genotype.

All psychotrophic medications require clinical monitoring. This report is not intended to imply that the drugs listed are approved for the same indications or that they are comparable in safety or efficacy. The brand name is shown for illustrative purposes only; other brand names may be available. The prescribing physician should review the prescribing information for the drug(s) being considered and make treatment decisions based on the patient's individual needs and the characteristics of the drug prescribed. Propranolol might be considered off-label when being used for neuropsychiatric disorders. Please consult the FDA drug label for specific guidelines regarding its use.
Medications upon admission

- Amlodipine 5mg 1 tab PO q AM for hypertension
- Avorstatin 20mg 1 tab PO q hs for hyperlipidemia
- **Diphenhydramine 50mg q hs for insomnia**
- Doxazosin 2mg q hs for hypertension
- Metoprol ER 100mg 3 tabs q AM for chronic left Diastolic Heart Failure
- Fluticasone-salmeterol 230-21mcg 2 puffs bid
- Furosemide 40mg daily for hypertension
- Gabapentin 1200 mg tid for arthralgia
- Lisinopril 40mg daily for hypertension
- Hydralazine 50mg 1 tab PO bid for hypertension
- Omeprazole 20mg ER 20mg daily for GERD
- **Risperidone 1mg q hs for schizophrenia**
- **Trazodone 100mg q hs for insomnia**
- **Venlafaxine EX 300mg q AM for depression**
- Acetaminophen 650mg q 4 hours PRN for knee pain
- Cyclobenzaprine 10mg 1 tab PO PRN for muscle back spasm
- Ibuprofen 600mg q 8 hours PRN for Arthralgia
- Nitroglycerin SL 0.4mg 1 tab q 5 min up to 3 doses PRN for chest pain
GeneSight® Psychotropic
COMBINATORIAL PHARMACOGENOMIC TEST

ANTIDEPRESSANTS

USE AS DIRECTED

desvenlafaxine (Pristiq®)
levomilnacipran (Fetzima®)
selegiline (Emsam®)
sertraline (Zoloft®)
vilazodone (Viibryd®)

MODERATE GENE-DRUG INTERACTION

citalopram (Celexa®) 1
escitalopram (Lexapro®) 1
mirtazapine (Remeron®) 3,7
trazodone (Desyrel®) 3,7
duloxetine (Cymbalta®) 3,7,8
fluvoxamine (Luvox®) 3,7,8

SIGNIFICANT GENE-DRUG INTERACTION

buproprion (Wellbutrin®) 1,6
fluoxetine (Prozac®) 1,6
venlafaxine (Effexor®) 1,6
amitriptyline (Elavil®) 1,6,8
clomipramine (Anafranil®) 1,6,8
desipramine (Norpramin®) 1,6,8
doexepin (Sinequan®) 1,6,8
imipramine (Tofranil®) 1,6,8
nortriptyline (Pamelor®) 1,6,8
vortioxetine (Trintellix®) 1,6,8
paroxetine (Paxil®) 1,4,6,8

CLINICAL CONSIDERATIONS

1: Serum level may be too high, lower doses may be required.
3: Difficult to predict dose adjustments due to conflicting variations in metabolism.
4: Genotype may impact drug mechanism of action and result in reduced efficacy.
6: Use of this drug may increase risk of side effects.
7: Serum level may be too low in smokers.
8: FDA label identifies a potential gene-drug interaction for this medication.

All psychotropic medications require clinical monitoring.
This report is not intended to imply that the drugs listed are approved for the same indications or that they are comparable in safety or efficacy. The brand name is shown for illustrative purposes only; other brand names may be available. The prescribing physician should review the prescribing information for the drug(s) being considered and make treatment decisions based on the patient's individual needs and the characteristics of the drug prescribed. Propranolol might be considered off-label when being used for neuropsychiatric disorders. Please consult the FDA drug label for specific guidelines regarding its use.

CONFIDENTIAL HEALTHCARE INFORMATION
© 2020 Assurex Health, Inc. All Rights Reserved.
Legal and Ethical Implications

• Potential legal and ethical questions always arise with new technology and treatment options

• Who should have access to a person’s genetic profile?

• How will we protect genetic privacy and prevent genetic discrimination in the workplace and in our health care?

• How will we as consumers use genetic information to our benefit?
Pharmacogenomics Resources

Guidelines and Resources

- PharmGKB (PharmGKB.org): Pharmacogenomics Knowledge Base
- FDA: Provides specific pharmacogenomics/drug-gene interaction in the drug labeling.

Research

- PGRN.org: Pharmacogenomics Research Network
- PharmVar.org
- https://gnomad.broadinstitute.org
Drug Labeling

FDA Drug labeling may contain information on genomic biomarkers:

- Drug exposure and clinical response variability
- Risk for adverse events
- Genotype-specific dosing
- Mechanisms of drug action
- Polymorphic drug target and disposition genes
- FDA Label database features allow navigation of drug labeling information. A total of 261 drugs and 362 drug–biomarker pairs (DBPs) were identified. DBPs can be categorized into Indication, Safety, Dosing and Information.

Limitations of Testing

• Reimbursement pathway of testing not established

• Ethical issues with genetic testing and data sharing

• Integration of pharmacogenomics, personalized medicine, and the payer and regulatory environment is still ongoing

• Clinician are generally not educated concerning available tests, associate drugs, and outcomes

• The response to a medication may be a result of the interactions of multiple genes
Pharmacogenomics is the study of how genes affect a person’s response to drugs.

Precision Medicine is data driven and takes into account variability in genes, environment, and lifestyle.

The goal of pharmacogenomics testing is to avoid adverse side effects, maximize drug efficacy, and select responsive patients.

Pharmacogenomic testing can improve pharmacotherapy by identifying patients at an increased risk of having no response when prescribed a medication, and/or at an increased risk of experiencing drug-induced toxicities.

Useful resources for finding how genetic variations affect response to medications are: PharmGKB, CPIC (Clinical Pharmacogenetics Implementation Consortium), and FDA Table of Pharmacogenomic Biomarkers in Drug Labeling.

One primary limitation of pharmacogenomic testing is that clinicians are not generally educated concerning available tests, associated drugs, and outcomes.